
ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology (IARJSET)

National Conference on Renewable Energy and Environment (NCREE-2015)

IMS Engineering College, Ghaziabad

Vol. 2, Issue 1, April 2015

Copyright to IARJSET DOI10.17148/IARJSET 167

Service Mechanism for Reusability Framework

for Software and it’s

Challenges: Literature review

Mr. Afsaruddin
1
, Mr. Faiyaz Ahamad

2

 Assistant Professor of Department of Computer eng, Integral University, lucknow
1,2

Abstract: Software reuse is the use of existing software or software components to build new software and reuse ideas

with the ability to combine independent software components to form a larger unit of software. The key idea in

software reuse is domain engineering. Most software systems are not new but they are the variations of the already built

software systems. Software reuse improves the quality and productivity of the software production process. This paper

briefly summarizes the current research status in the field of software reuse and major research contributions. Some

future directions for research in software reuse are also discussed.

Index Terms: Software reuse, Domain engineering, Software components.

I. INTRODUCTION

Software reuse is the process of creating software systems

from existing software rather than building them from

scratch. The software reuse recognized as having

significant potential to improving software development

productivity and software quality. At a high-level,

software reuse consists of two types of activities: one is

the management of software components, including the

specification, classification, and retrieval of existing

components; the other is component integration that

involves the integration of the reused components into an

application. Over the past several years, a large number of

techniques have been developed to address these reuse

issues. However, the lack of a seamless integration of

these techniques imposes significant obstacles to

achieving effective reuse.
This paper surveys recent work based on the broad
framework of software reusability research, and suggests
directions for future research. We address general,
technical, and non-technical issues of software reuse, and
conclude that reuse needs to be viewed in the context of a
total systems approach.
We begin with some basic definitions. Software reuse is
the use of existing software or software knowledge to
construct new software. Reusable assets can be either
reusable software or software knowledge. Reusability is a
property of a software asset that indicates its probability of
reuse[17].
Software reuse purpose is to improve software quality and
productivity. Reusability is one of the major software
quality factors. Software reuse is of interest because
people want to build systems that are bigger and more
complex, more reliable, less expensive and that are

delivered on time. They have found traditional software
engineering methods inadequate, and feel that software
reuse can provide a better way of doing software
engineering.A key idea in software reuse is domain
engineering (product line engineering). The basic insight
is that most software systems are not new. Rather they are
variants of systems that have already been built. Most
organizations build software systems within a few
business lines, called domains, repeatedly building system
variants within those domains. This insight can be
leveraged to improve the quality and productivity of the
soft ware production process [19]. The C++ language was
also designed to encourage reuse as described in [1].

II. A FRAMEWORK FOR SOFTWARE REUSE

There are many approaches to the concept of software
reuse. To organize and place various concepts and models
of reuse (or reusability research), a number of conceptual
frameworks for software reuse have been proposed.
A framework which classifies the available technologies

for reusability into two major groups, composition
technologies and generation technologies is proposed by
Biggerstaff and Richter. Another framework based on
three research and development questions, What is being
reused? How should it be reused? What is needed to
enable successful reuse? is developed by Freeman. In
Freeman's framework, five levels of reusable information
code fragments, logical structure, functional architecture,
external knowledge (such as application domain
knowledge and software development knowledge), and
environmental knowledge related to organizational and
psychological issues are defined. For each of the five
information levels, typical projects of three different

http://www.ijireeice.com/

ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology (IARJSET)

National Conference on Renewable Energy and Environment (NCREE-2015)

IMS Engineering College, Ghaziabad

Vol. 2, Issue 1, April 2015

Copyright to IARJSET DOI10.17148/IARJSET 168

expected payoff periods are identified to answer research
and development questions. Other frameworks by
Horowitz and Munson and Jones are based on the forms of
reuse such as data, code, and design.

III. SOFTWARE ARCHITECTURES

Software application architecture is the process of defining
a structured solution that meets all of the technical and
operational requirements, while optimizing common
quality attributes such as performance, security, and
manageability. It involves a series of decisions based on a
wide range of factors, and each of these decisions can have
considerable impact on the quality, performance,
maintainability, and overall success of the application.
Philippe Kruchten, Grady Booch, Kurt Bittner, and Rich
Reitman derived and refined a definition of architecture
based on work by Mary Shaw and David Garlan. Their
definition is: “Software architecture encompasses the set
of significant decisions about the organization of a
software system including the selection of the structural
elements and their interfaces by which the system is
composed; behavior as specified in collaboration among
those elements; composition of these structural and
behavioral elements into larger subsystems; and an
architectural style that guides this organization. Software
architecture also involves functionality, usability,
resilience, performance, reuse, comprehensibility,
economic and technology constraints, tradeoffs and
aesthetic concerns.”Using architecture patterns, reference
architectures for an application domain or a product line
can be built.
These architectures embody application domain-specific
semantics and quality attributes inherited from the
architecture patterns. Application architectures may be
created using domain architectures. Examples of domain
architectures are reported in [16]. Software architecture
may be explored at different levels of abstraction. Shaw
explored various structural models called architecture
styles that were commonly used in software and then
examined quality attributes related to each style. At a
lower level of abstraction than style, [15] identified
architectural patterns that commonly occur in various
design problem domains such as client-server
architectures, proxies, etc. In theory, these architecture
patterns can be defined by applying a combination of
architecture styles.
Platform architectures are middleware on/with which
applications and components for implementation of an
application can be developed. Examples of these are
CORBA, COM+, and J2EE. A platform architecture
selected for implementation of applications in a domain
may influence architectural decisions for domain
architecture. For example, transaction management is
supported by most of platform architectures and domain
architecture may use facilities provided by the platform
architecture selected for the domain [19].

IV.SOFTWARE REUSE APPROACHES

The many different software development approaches can
be separated into four categories: generation methods,
composition methods, object-oriented methods, and the
CASE approach[2].

4.1 GENERATION METHODS
The objects being reused are general problem solving
patterns that drive the generation of the target programs.
There are three classes of generation methods: language-
based systems, application generators, and transformation-
based systems.

4.2 COMPOSITION METHODS
Software development approaches that emphasize the
composition approach utilize existing reusable resources
that are viewed as atomic building blocks which are
organized and combined according to well-defined rules.
The major objective for these approaches is the creation of
software libraries containing generic and reusable
software components which can be combined to produce
new target systems. This is the traditional view of
reusability research. There are three areas of research
emphasis: the development of application component
libraries, the classification and retrieval strategies, and
composition principles.

4.3 OBJECT-ORIENTED METHODS

Object-oriented programming languages provide another

approach to reusability. A good discussion is contained in

CACM. The properties of object oriented languages that

help reusability include information hiding, property

inheritance, and polymorphism. Information hiding is a

reusability mechanism, since those parts of a system which

cannot see information that must change can be reused to

(re)build the system when that information does change.

Property inheritance allows new subclasses to be built on

top of super classes by inheriting variables and methods of

the super class. The process of inheritance encourages

reuse of previously defined data attributes and procedures

in a more specific manner. Polymorphism means that

operations have multiple meanings depending on the types

of their arguments. Polymorphism can make reuse more

flexible. Tarumi et al. have developed a programming

environment for object-oriented programming which

supports reuse of classes through the use of an expert

system. Object-oriented programming languages provide

flexibility in using reusable objects. However, it is

sometimes difficult to combine operations defined by

different reusable objects. Even in an object oriented

environment, a major problem is that it is still difficult for

users, especially those who were not involved in the

development of the existing software resources, to know

whether there are reusable software resources to match

their needs. Moreover, organizations will continue to use

traditional software development approaches for reasons

of inertia and efficiency as well as because of the large

installed.

http://www.ijireeice.com/

ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology (IARJSET)

National Conference on Renewable Energy and Environment (NCREE-2015)

IMS Engineering College, Ghaziabad

Vol. 2, Issue 1, April 2015

Copyright to IARJSET DOI10.17148/IARJSET 169

4.4 CASE TOOLS AND REUSE

Banker and Kauffman report that the level of code reuse is
the major factor that deserves attention in software
projects developed using CASE tools because extensive
code reuse can increase productivity by an order of
magnitude or more, and thus yield significant cost
reductions in software development operations.
The central idea of CASE tools for reuse is the availability
of software base containing software and software-related
constructs such as domain knowledge and methodological
knowledge. The availability of a software base makes
application-oriented software reuse from early phases of
the software development cycle (such as analysis and
design) feasible with CASE tools. In contrast, most other
current reuse approaches support only independent single
component reuse at the coding phase.

Two different aspects of the CASE approach, integrated
data dictionaries and code generators, are reported to
promote software reusability by Oman. The data
dictionary integrates all reusable software resources from
various tasks into the central data dictionary and facilitates
access to these resources for reuse purposes. CASE tools
such as Excelerator and Prosa provide an integrated data
dictionary. Code generators associated with a number of
CASE tools automatically generate target source code
from graphical software system models. CASE tools such
as Cradle, HPS, IEF, IEW and Prosa have one or more
code generators for programming languages such as Ada,
C, COBOL, Pascal, and SQL.

V. SOFTWARE DESIGN PATTERN

In software engineering, a design pattern is a general
reusable solution to a commonly occurring problem within
a given context in software design. A design pattern is not
a finished design that can be transformed directly into
source or machine code. It is a description or template for
how to solve a problem that can be used in many different
situations. Patterns are formalized best practices that the
programmer can use to solve common problems when
designing an application or system. Object-oriented design
patterns typically show relationships and interactions
between classes or objects, without specifying the final
application classes or objects that are involved. Patterns
that imply object-orientation or more generally mutable
state, are not as applicable in functional programming
languages.Design patterns reside in the domain of modules
and interconnections. At a higher level there are
architectural patterns that are larger in scope, usually
describing an overall pattern followed by an entire system.
There are many types of design patterns, for instance

 Algorithm strategy patterns addressing concerns

related to high-level strategies describing how to
exploit application characteristics on a computing
platform.

 Computational design patterns addressing

concerns related to key computation identification.

 Execution patterns that address concerns related
to supporting application execution, including
strategies in executing streams of tasks and
building blocks to support task synchronization.

 Implementation strategy patterns addressing

concerns related to implementing source code to
support program organization, and the common
data structures specific to parallel programming.

 Structural design patterns addressing concerns

related to high-level structures of applications being

developed.

VI.SOFTWARE REUSE: METRICS AND

MODELS

 Fig 1.Software reuse metrics and models
As organizations implement systematic software reuse
programs to improve productivity and quality, they must
be able to measure their progress and identify the most
effective reuse strategies. This is done with reuse metrics
and models[4]. Figure 1, reuse models and metrics are
categorized into types: (1) reuse cost-benefits models, (2)
maturity assessment, (3) amount of reuse, (4) failure
modes, (5) reusability, and (6) reuse library metrics.

 Reuse cost-benefits models include economic

cost/benefit analysis as well as quality and

productivity payoff. As organizations contemplate

systematic software reuse, the first question that

will arise will probably concern costs and benefits.

Organizations will need to justify the cost and time

involved in systematic reuse by estimating these

costs and potential payoffs. Cost benefit analysis

models include economic cost-benefit models and

quality and productivity payoff analyses.
Several reuse cost-benefit models have been
reported. None of these models are derived from
data, nor have they been validated with data.
Instead, the models allow a user to simulate the
tradeoffs between important economic parameters
such as cost and productivity. These are estimated
by setting arbitrary values for cost and productivity
measures of systems without reuse, and then
estimating these parameters for systems with reuse.

 Maturity assessment models categorize reuse

programs by how advanced they are in
implementing systematic reuse.

http://www.ijireeice.com/

ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology (IARJSET)

National Conference on Renewable Energy and Environment (NCREE-2015)

IMS Engineering College, Ghaziabad

Vol. 2, Issue 1, April 2015

Copyright to IARJSET DOI10.17148/IARJSET 170

 Reuse maturity models support an assessment of how
advanced reuse programs are in implementing
systematic reuse, using an ordinal scale of reuse
phases. They are similar to the Capability Maturity
Model developed at the Software Engineering
Institute (SEI) at Carnegie Mellon University. A
maturity model is at the core of planned reuse,
helping organizations understand their past, current,
and future goals for reuse activities. Several reuse
maturity models have been developed and used,
though they have not been validated.

 Koltun and Hudson Reuse Maturity Model To use

this model, an organization will assess its reuse
maturity before beginning a reuse improvement
program by identifying its placement on each
dimension. (In our experience, most organizations are
between Initial/Chaotic and Monitored at the start of
the program.) The organization will then use the
model to guide activities that must be performed to
achieve higher levels of reuse maturity. Once an
organization achieves Ingrained reuse, reuse becomes
part of the business routine and will no longer be

 Failure modes analysis is used to identify and order

the impediments to reuse in a given organization.
Implementing systematic reuse is difficult, involving
both technical and non technical factors. Failure
modes analysis provides an approach to measuring
and improving a reuse process based on a model of
the ways a reuse process can fail. The reuse failure
modes model reported by Frakes and Fox can be used
to evaluate the quality of a systematic reuse program,
to determine reuse impediments in an organization
and to devise an improvement strategy for a
systematic reuse program.

 Given the many factors that may affect reuse success,
how does an organization decide which ones to
address in its reuse improvement program?

 This question can be answered by finding out why
reuse is not taking place in the organization. This can
be done by considering reuse failure mode hat is, the
ways that reuse can fail.

 Reusability metrics indicate the likeli-hood that an
artifact is reusable. Another important reuse
measurement area concerns the estimation of
reusability for a component. Such metrics are
potentially useful in two key areas of reuse: reuse
design and reengineering for reuse. The essential
question is, are there measurable attributes of a
component that indicate its potential reusability? If so,
then these attributes will be goals for reuse design and
reengineering. One of the difficulties in this area is
that attributes of reusability are often specific to given
types of reusable components, and to the languages in
which they are implemented.

 Reuse library metrics are used to manage and
track usage of a reuse repository. Organizations
often encounter the need for these metrics and
models in the order presented.

VII.REUSE LIBRARIES

Software Reuse Repository is simply a component library
which stores the reusable components and must have the
characterization of the assets that are included within. In
order to make a effective use of a software repository, a
reuser must have a clear understanding of its contents, so
as to determine that whether his needs are likely to be met
by the library. Repositories are used as mechanisms to
store, search and retrieve components[6]. But finding and
reusing appropriate software components is often very
challenging particularly when faced with a large collection
of components and little documentation about how they
can and should be used. Many software component
repositories have been developed often extending the
approaches used for software libraries. The software
reusable component is defined as
“any component that is specifically developed to be used
and is actually used in more than one context”. This does
not just include code, other products from the system
lifecycle can also be reused such as specifications,
requirements and designs. Components in this case can be
taken to include all potentially reusable products of the
system lifecycle including code, documentation, design,
requirements, architecture etc. „Development of software
reusable repository‟ is required to implement a
classification scheme to build a library and to provide an
interface for browsing and retrieving components. The
main requirement is to develop a classification scheme
which is used for classifying components. The system
should support three operations uploading components,
downloading components and search for software
components.There has been disagreement in the reuse
research community about the importance of libraries for
reuse. However, failure modes analysis of the reuse
process shows that in order to be reused a component must
be available, findable and understandable. A reuse library
supports all of these. The argument has also been made
that most component collections are small and, therefore,
do not need sophisticated library support. However, the
emergence of the World Wide Web as a defacto standard
library of reusable assets argues against this point of view
[19].Experiments on reuse libraries indicate that current
methods of component representation could be improved.
There is also a need for library environments that include
facilities for configuration management and that integrate
facilities for measurements such as usage and return on
investment. The paper by de Jonge in this issue discusses
how to handle the build process for reusable components.

VIII.COMPONENTRY

Component-based software engineering (CBSE) (also
known as component-based development (CBD)) is a
branch of software engineering that emphasizes the
separation of concerns in respect of the wide-ranging
functionality available throughout a given software
system[11]. It is a reuse-based approach to defining,
implementing and composing loosely coupled independent

http://www.ijireeice.com/

ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology (IARJSET)

National Conference on Renewable Energy and Environment (NCREE-2015)

IMS Engineering College, Ghaziabad

Vol. 2, Issue 1, April 2015

Copyright to IARJSET DOI10.17148/IARJSET 171

components into systems. This practice aims to bring
about an equally wide-ranging degree of benefits in both
the short-term and the long-term for the software itself and
for organizations that sponsor such software.
The broad interest in component-based software
engineering has resulted in several component
development, integration and deployment technologies.
Most noted of these are Object Management Group
(OMG)‟s Common Object Request Broker Architecture
(CORBA) Component Model (CCM), Sun‟s Enterprise
JavaBeans (EJB), and Microsoft‟s
Component Object Model (COM+).
 CORBA CCM allows integration and invocation of
distributed components without concern for object
location, programming language, operating system,
communication protocol, or hardware platform. Concerns
that cut across components, such as transaction handling,
security, persistent state management, and event
notification, are sup -ported by CORBA Object Services
(COS).
EJB along with Java Remote Method Invocation (RMI)
provides, as with CORBA, a platform for developing,
integrating, and deploying distributed components. EJB
provides an environment for handling complex features of
distributed components such as transaction management,
connection pooling, state management, and
multithreading. This technology depends on the Java
language but it achieves platform independence through
the language. EJB, together with J2EE and Java servlets,
provides a middleware platform for developing Web
applications[16].

IX.DOMAIN ENGINEERING (PRODUCT LINE

ENGINEERING)

Domain engineering, also called product line engineering,
is the entire process of reusing domain knowledge in the
production of new software systems. It is a key concept in
systematic software reuse. A key idea in systematic
software reuse is the application domain, a software area
that contains systems sharing commonalities. Most
organizations work in only a few domains. They
repeatedly build similar systems within a given domain
with variations to meet different customer needs. Rather
than building each new system variant from scratch,
significant savings may be achieved by reusing portions of
previous systems in the domain to build new ones.
Domain engineering is designed to improve the quality of
developed software products through reuse of software
artifacts. Domain engineering shows that most developed
software systems are not new systems but rather variants
of other systems within the same field. As a result,
through the use of domain engineering, businesses can
maximize profits and reduce time-to-market by using the
concepts and implementations from prior software
systems and applying them to the target system. The
reduction in cost is evident even during the
implementation phase.
Domain engineering focuses on capturing knowledge
gathered during the software engineering process. By

developing reusable artifacts, components can be reused
in new software systems at low cost and high quality
Because this applies to all phases of the software
development cycle, domain engineering also focuses on
the three primary phases: analysis, design, and
implementation, paralleling application engineering. This
produces not only a set of software implementation
components relevant to the domain, but also reusable and
configurable requirements and designs.

9.1 Family-Oriented Abstraction, Specification, and

Translation (FAST).
Lucent Technologies introduced Family-Oriented
Abstraction, Specification, and Translation (FAST)
method in 1999 [7]. FAST applies product-line
architecture principles into software engineering process.
Thus, a common platform is specified to a family of
software products. The platform is based on the
similarities between several products close to each other.
The variabilities among the members of a product family
can be implemented with different variation techniques
such as parameterization or conditional compilation.
The purpose of FAST is to make software engineering
process more efficient by reducing multiple work, by
decreasing production costs, and by shortening time-to-
market. FAST process can be applied in a consistent and
disciplined way. This is called PASTA (Process and
Artifact State Transition Abstraction) model. PASTA
model provides a path to follow during FAST process. It
determines a set of steps that can succeed the current step.
Thus, it gives precise instructions to follow, but still
supports individual choices to make during the process.
The purpose of PASTA is to make the software
engineering process easy to iterate and reuse in future
processes.

9.2 Domain Analysis and Reuse Environment(DARE),

is a CASE tool that

supports domain analysis – the activity of identifying and
documenting the commonalities and variabilities in related
software systems[5]. DARE supports the capture of
domain information from experts, documents, and code in
a domain. Captured domain information is stored in a
domain book that will typically contain a generic

architecture for the domain and domain‐specific reusable

components. The DARE process draws on three sources
of information: code, documents, and expert knowledge as
the basis for domain models. Information extracted from
these three sources is used to build domain models such as
facet tables and templates, feature tables, and generic
architectures. All information and models are stored in a
domain book. DARE has been used successfully in
industry, for example, to support the building of text and
database systems at Oracle [6].

9.3 Product Line UML-Based Software Engineering

(PLUS).
 The field of software reuse has evolved from reuse of

individual components toward large-scale reuse with

http://www.ijireeice.com/

ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology (IARJSET)

National Conference on Renewable Energy and Environment (NCREE-2015)

IMS Engineering College, Ghaziabad

Vol. 2, Issue 1, April 2015

Copyright to IARJSET DOI10.17148/IARJSET 172

software product lines. Software modeling approaches are
now widely used in software development and have an
important role to play in software product lines. Modern
software modeling approaches, such as UML, provide
greater insights into understanding and managing
commonality and variability by modeling product lines
from different perspectives[12].

The PLUS method extends the UML-based modeling
methods that are used for single systems to address
software product lines. With PLUS, the objective is to
explicitly model the commonality and variability in a
software product line. PLUS provides a set of concepts
and techniques to extend UML-based design methods and
processes for single systems to handle software product
lines.
The PLUS method is similar to other UML-based object-
oriented methods when used for analyzing and modeling a
single system. Its novelty, and where it differs from other
methods, is the way it extends object-oriented methods to
model product families. In particular, PLUS allows
explicit modeling of the similarities and variations in a
product line.
9.4 Feature-Oriented Reuse Method (FORM) was
developed at Pohang University of Science and
Technology(POSTECH) [8] and is an extension of the
Feature-Oriented Domain Analysis (FODA) method [9].
It includes techniques and tools for product line
engineering but has a loose process structure. This
method has been applied to several industrial application
domains, including electronic bulletin board systems,
PBX, elevator control systems, yard inventory systems,
and manufacturing process control systems, to create
product line software engineering environments and
software assets [10].

FORM is a systematic method that looks for and captures

commonalties and variabilities of a product line in terms

of“features.” These analysis results are used to develop

product line architectures and components. The model that

captures the commonalties and variabilities is called a

feature model. It is used to support both engineering of

reusable product line assets and development of products

using the assets.

9.5 Komponentbasierte Anwendungsentwicklung

(KobrA). Fraunhofer

 IESE has been developing the KobrA method, a
component based product line engineering approach with
UML and component-based application development
method [11]. KobrA provides an approach to developing
generic assets that can accommodate variations of a
product line through framework engineering. The
framework engineering starts with de-signing a context
under which products of a product line will be used. The
context includes information on the scope, commonality,
and variability of the product line. Then, product line
requirements are analyzed and the Komponent (i.e.,
KobrA component) specifications are developed. Based
on the specifications, the Komponent realizations, which
describe the design that satisfies the requirements, are
developed. KobrA also provides a decision model that

constrains the selection of variations for the valid
configuration of products. KobrA includes both processes
and techniques for product line engineering.

9.6 Koala, developed at Philips Corp. for analysis of
embedded software in the domain of electrical home
appliances, is an architecture description language for
product lines. In Koala, diversity interfaces and switches
are provided for handling product variations. The diversity
interfaces can be used to handle the internal diversity of
components and the switch can be used to route
connections between interfaces. When a component
provides some extra functions, the access to these
functions can be defined as optional interfaces. This
enables the optimization of the code at compile time.
Koala is a component-based product line engineering
method with tools for integrating components both at
compile-time and at runtime[.Koala is a descendant of
Darwin and is designed based on the experience of
applying Darwin to television software systems.

X. BUSINESS AND FINANCE

The ultimate purpose of domain engineering and
systematic software reuse is to improve the quality of the
products and services that a company provides and,
thereby, maximize profits. It is easy to lose sight of this
goal when considering the technical challenges of
software reuse and yet, software reuse will only succeed if
it makes good business sense. Capital can be expended by
an organization in many ways to maximize return to
shareholders. Software reuse will only be chosen if a good
case can be made that it is the best alternative choice for
use of capital.
Business related reuse research has identified
organizational structure to support corporate reuse
programs, staged process models for reuse adoption, and
models for estimating return on investment from a reuse
program. More recent work has extended the return on
investment analysis to include benefits from strategic
market position .

Important problems remaining in this area include:

 Process focus.

 Sustaining reuse programs.

 Tech transfer.

 Reuse and corporate strategy.

 Organizational issues.

We will now discuss some of these issues.

10.1 PROCESS FOCUS
A software development process, also known as a

software development lifecycle (SDLC), is a structure

imposed on the development of a software product.

Similar terms include software life cycle and software

process. It is often considered a subset of systems

development life cycle. There are several models for

such processes, each describing approaches to a variety

of tasks or activities that take place during the process.

http://www.ijireeice.com/

ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology (IARJSET)

National Conference on Renewable Energy and Environment (NCREE-2015)

IMS Engineering College, Ghaziabad

Vol. 2, Issue 1, April 2015

Copyright to IARJSET DOI10.17148/IARJSET 173

Implementing a reuse program in a corporate environment
requires a decision about when and where a capital
investment is to be made. Development of reusable assets
often requires a capital investment and there should be a
strategic decision as to whether investment will be made
proactively or reactively.

Proactive investment for software reuse is like the

waterfall approach in conventional software engineering.

The target domain or product line is analyzed,

architectures for the domain are defined, and then reusable

assets are designed and implemented taking foreseeable

product variations into account. This approach tends to

require a large upfront investment, and returns on

investment can only be seen when products are developed

and maintained. This approach might be suited to

organizations that can predict their product line

requirements well into the future and that have the

Reactive investment is an incremental approach to asset

building. One develops reusable assets as reuse

opportunities arise while developing products. A sub

domain with a clear problem boundary and projected

requirements variations might be a good candidate. This

approach is advantageous in that the asset development

costs can be distributed over several products and no

upfront large capital investment is necessary. However, if

there is no sound architectural basis for the products in a

domain, this approach can be costly as existing products

may continuously have to be reengineered when assets are

developed.

10.2 TECHNOLOGY TRANSFER
 Here, we use the term “technology” to encompass a large
number of things, and it is important for us to understand
what “technologies” to study. For example, software
engineers use a variety of techniques or methods to build
and maintain software. We use the terms method or
technique to mean a formal procedure for producing some
result. By contrast, a
“tool” is an instrument, language or automated system for
accomplishing something in a better way. This better way
can mean that the tool makes us more accurate, more
efficient, or more productive, or that it enhances the
quality of the resulting product. However, a tool is not
always necessary for making something well.

 10.3 ORGANIZATIONAL ISSUES
There are two types of commonly observed organizational
approaches to establishing a reuse program: centralized
and distributed asset development. The centralized
approach typically has an organizational unit dedicated to
developing, distributing, maintaining, and, often,
providing training about reusable assets. The unit has
responsibilities to analyze commonalities and variability’s
of applications within the product line that have been
developed or that will be developed in the future. The unit
also develops standard architectures and reusable assets,
and then makes them available to development projects.
The unit maintains these assets and, often, also supports
customization. The cost of this organizational unit is
amortized across projects within the product line might be

suited to organizations that can predict their product line
requirements well into the future and that and returns on
investment can only be seen when products are developed
and maintained.

XI. CONCLUSIONS &FUTURE RESEARCH

In this paper, I discussed different software reuse

techniques and future scope for research. Software reuse is
regarded as a key to improving software development
productivity and quality. As outlined above, researchers
and practitioners have proposed many approaches to
increase the potential of software reusability. The full
benefit of software reuse can only be achieved by
systematic reuse that is conducted formally as an integral
part of the software development cycle. Software reuse‟s
safety and reliability issues are important and must be
adequately addressed if reuse is to be a common practice.
There is a lot of scope for research in software reuse, like
“Addressing the problem of increased maintenance costs”,
“Lack of tool support”, “Reducing the cost for creating
and maintaining a component library of software reuse”,
“Finding, understanding and adapting reusable
components”.
Currently, most reuse research focuses on creating and
integrating adaptable components at development or at
compile time. However, with the emergence of ubiquitous
computing, reuse technologies that can support adaptation
and reconfiguration of architectures and components at
runtime are in demand. One implication of this
development is that we somehow need to embed
engineering know-how into code so it can be applied
while an application is running. More research on self-
adaptive software, reconfigurable context-sensitive
software, and self-healing systems is needed.

Cost-

benefit Reuse
Library

Analysis

Metrics

Maturity Failure
Reusabilit
y

Assessment Modes
Assessme
nt

Analys
is

Amount
of

 Reuse

http://www.ijireeice.com/

ISSN (Online) 2393-8021

ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology (IARJSET)

National Conference on Renewable Energy and Environment (NCREE-2015)

IMS Engineering College, Ghaziabad

Vol. 2, Issue 1, April 2015

Copyright to IARJSET DOI10.17148/IARJSET 174

REFERENCES

[1] B. Stroustrup, “Language-Technical Aspects of Reuse,” Proc.
Fourth Int‟l Conf. Software Reuse (ICSR ‟96),

1996.

[2] Hafedh Mili, Patma Mili, and Ali Mili, “Reusing Software:

Issuses and Research Direction”, vol. 21, pp. 5-52, 1995.
[3] C. Krueger, “Eliminating the Adoption arrier,” IEEE

Software, pp. 29-31, July/Aug. 2002.

[4] W. Frakes and C. Terry, “Software Reuse: Metrics and

Models,” ACM Computing Surveys, vol. 28, pp. 415-435,
1996.

[5] W. Frakes, R. Prieto-Diaz, and C. Fox, “DARE: Domain
Analysis and Reuse Environment,” Annals of Software
Eng., vol. 5, pp. 125-141, 1998.

[6] O. Alonso, “Generating Text Search Applications for
Databases,” IEEE Software, pp. 98-105, 2003.

[7] D.M. Weiss and C.T. R. Lai, Software Product-Line

Engineering: A Family-Based Software Development
Process. Addison-Wesley, 1999.

[8] K.C. Kang, J. Lee, and P. Donohoe, “Feature-Oriented
Product Line Engineering,” IEEE Software, vol. 19, no.
4, pp. 58-65, July/ Aug. 2002.

[9] K.C. Kang et al., “Feature-Oriented Domain Analysis

(FODA) Feasibility Study,” Technical Report CMU/SEI-90-
TR-21, Software Eng. Inst., Carnegie Mellon Univ.,
Pittsburgh, Penn., 1990.

[10] K.C. Kang et al., “Feature-Oriented Product Line Software
Engineering: Principles and Guidelines, ”Domain Oriented
Systems Development: Perspectives and Practices K. Itoh et
al., eds., pp. 29-46, 2003.

[11] C. Atkinson et al., Component-Based Product Line
Engineering with UML. Addison- Wesley, 2002.

[12] H. Gomaa, Designing Software Product Lines with UML:

From Use Cases to Pattern-Based Software Architectures.
Addison-Wesley, 2004.

http://www.ijireeice.com/

